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Abstract

A multiword is compositional if its mean-
ing can be expressed in terms of the mean-
ing of its constituents. In this paper, we
collect and analyse the compositionality
judgments for a range of compound nouns
using Mechanical Turk. Unlike exist-
ing compositionality datasets, our dataset
has judgments on the contribution of con-
stituent words as well as judgments for the
phrase as a whole. We use this dataset
to study the relation between the judg-
ments at constituent level to that for the
whole phrase. We then evaluate two differ-
ent types of distributional models for com-
positionality detection – constituent based
models and composition function based
models. Both the models show competi-
tive performance though the composition
function based models perform slightly
better. In both types, additive models per-
form better than their multiplicative coun-
terparts.

1 Introduction

Compositionality is a language phenomenon
where the meaning of an expression can be ex-
pressed in terms of the meaning of its constituents.
Multiword expressions (Sag et al., 2002, MWEs)
are known to display a continuum of composi-
tionality (McCarthy et al., 2003) where some of
them are compositional e.g. “swimming pool”,
some are non-compositional e.g. “cloud nine”,
and some in between e.g. “zebra crossing”.

The past decade has seen interest in develop-
ing computational methods for compositionality
in MWEs (Lin, 1999; Schone and Jurafsky, 2001;
Baldwin et al., 2003; Bannard et al., 2003; Mc-
Carthy et al., 2003; Venkatapathy and Joshi, 2005;
Katz and Giesbrecht, 2006; Sporleder and Li,

2009). Recent developments in vector-based se-
mantic composition functions (Mitchell and Lap-
ata, 2008; Widdows, 2008) have also been applied
to compositionality detection (Giesbrecht, 2009).

While the existing methods of compositional-
ity detection use constituent word level seman-
tics to compose the semantics of the phrase, the
evaluation datasets are not particularly suitable to
study the contribution of each constituent word
to the semantics of the phrase. Existing datasets
(McCarthy et al., 2003; Venkatapathy and Joshi,
2005; Katz and Giesbrecht, 2006; Biemann and
Giesbrecht, 2011) only have the compositionality
judgment of the whole expression without con-
stituent word level judgment, or they have judg-
ments on the constituents without judgments on
the whole (Bannard et al., 2003). Our dataset al-
lows us to examine the relationship between the
two rather than assume the nature of it.

In this paper we collect judgments of the con-
tribution of constituent nouns within noun-noun
compounds (section 2) alongside judgments of
compositionality of the compound. We study the
relation between the contribution of the parts with
the compositionality of the whole (section 3). We
propose various constituent based models (section
4.3) which are intuitive and related to existing
models of compositionality detection (section 4.1)
and we evaluate these models in comparison to
composition function based models. All the mod-
els discussed in this paper are built using a dis-
tributional word-space model approach (Sahlgren,
2006).

2 Compositionality in Compound Nouns

In this section, we describe the experimental
setup for the collecting compositionality judg-
ments of English compound nouns. All the exist-
ing datasets focused either on verb-particle, verb-
noun or adjective-noun phrases. Instead, we focus
on compound nouns for which resources are rel-



atively scarce. In this paper, we only deal with
compound nouns made up of two words separated
by space.

2.1 Annotation setup

In the literature (Nunberg et al., 1994; Baldwin
et al., 2003; Fazly et al., 2009), compositional-
ity is discussed in many terms including simple
decomposable, semantically analyzable, idiosyn-
cratically decomposable and non-decomposable.
For practical NLP purposes, Bannard et al. (2003)
adopt a straightforward definition of a compound
being compositional if “the overall semantics of
the multi-word expression (here compound) can
be composed from the simplex semantics of its
parts, as described (explicitly or implicitly) in
a finite lexicon”. We adopt this definition and
pose compositionality as a literality issue. A com-
pound is compositional if its meaning can be un-
derstood from the literal (simplex) meaning of its
parts. Similar views of compositionality as literal-
ity are found in (Lin, 1999; Katz and Giesbrecht,
2006). In the past there have been arguments in
favor/disfavor of compositionality as literality ap-
proach (e.g. see (Gibbs, 1989; Titone and Con-
nine, 1999)). The idea of viewing composition-
ality as literality is also motivated from the shared
task organized by Biemann and Giesbrecht (2011).
From here on, we use the terms compositionality
and literality interchangeably.

We ask humans to score the compositionality of
a phrase by asking them how literal the phrase is.
Since we wish to see in our data the extent that
the phrase is compositional, and to what extent
that depends on the contribution in meaning of its
parts, we also ask them how literal the use of a
component word is within the given phrase.

For each compound noun, we create three sepa-
rate tasks – one for each constituent’s literality and
one for the phrase compositionality. The motiva-
tion behind using three separate tasks is to make
the scoring mechanism for each task independent
of the other tasks. This enables us to study the
actual relation between the constituents and the
compound scores without any bias to any partic-
ular annotator’s way of arriving at the scores of
the compound w.r.t. the constituents.

There are many factors to consider in eliciting
compositionality judgments, such as ambiguity of
the expression and individual variation of annota-
tor in background knowledge. To control for this,

we ask subjects if they can interpret the meaning
of a compound noun from only the meaning of the
component nouns where we also provide contex-
tual information. All the possible definitions of a
compound noun are chosen from WordNet (Fell-
baum, 1998), Wiktionary or defined by ourselves
if some of the definitions are absent. Five exam-
ples of each compound noun are randomly chosen
from the ukWaC (Ferraresi et al., 2008) corpus and
the same set of examples are displayed to all the
annotators. The annotators select the definition of
the compound noun which occurs most frequently
in the examples and then score the compound for
literality based on the most frequent definition.

We have two reasons for making the annotators
read the examples, choose the most frequent def-
inition and base literality judgments on the most
frequent definition. The first reason is to provide
a context to the decisions and reduce the impact
of ambiguity. The second is that distributional
models are greatly influenced by frequency and
since we aim to work with distributional models
for compositionality detection we base our find-
ings on the most frequent sense of the compound
noun. In this work we consider the compositional-
ity of the noun-noun compound type without token
based disambiguation which we leave for future
work.

2.2 Compound noun dataset

We could not find any compound noun datasets
publicly available which are marked for composi-
tionality judgments. Korkontzelos and Manandhar
(2009) prepared a related dataset for compound
nouns but compositionality scores were absent and
their set contains only 38 compounds. There
are datasets for verb-particle (McCarthy et al.,
2003), verb-noun judgments (Biemann and Gies-
brecht, 2011; Venkatapathy and Joshi, 2005) and
adjective-noun (Biemann and Giesbrecht, 2011).
Not only are these not the focus of our work,
but also we wanted datasets with each constituent
word’s literality score. Bannard et al. (2003) ob-
tained judgments on whether a verb-particle con-
struction implies the verb or the particle or both.
The judgments were binary and not on a scale and
there was no judgment of compositionality of the
whole construction. Ours is the first attempt to
provide a dataset which have both scalar compo-
sitionality judgments of the phrase as well as the
literality score for each component word.



We aimed for a dataset which would include
compound nouns where: 1) both the component
words are used literally, 2) the first word is used
literally but not the second, 3) the second word
is used literally but not the first and 4) both the
words are used non-literally. Such a dataset would
provide stronger evidence to study the relation be-
tween the constituents of the compound noun and
its compositionality behaviour.

We used the following heuristics based on
WordNet to classify compound nouns into 4 above
classes.

1. Each of the component word exists either in
the hypernymy hierarchy of the compound
noun or in the definition(s) of the compound
noun. e.g. swimming pool because swimming
exists in the WordNet definition of swimming
pool and pool exists in the hypernymy hierar-
chy of swimming pool

2. Only the first word exists either in the hy-
pernymy hierarchy or in the definition(s) of
the compound and not the second word. e.g.
night owl

3. Only the second word exists either in the hy-
pernymy hierarchy or in the definition(s) of
the compound and not the first word. e.g. ze-
bra crossing

4. Neither of the words exist either in hyper-
nymy hierarchy or in the definition(s) of the
compound noun. e.g. smoking gun

The intuition behind the heuristics is that if a
component word is used literally in a compound,
it would probably be used in the definition of the
compound or may appear in the synset hierarchy
of the compound. We changed the constraints,
for example decreasing/increasing the depth of the
hypernymy hierarchy, and for each class we ran-
domly picked 30 potential candidates by rough
manual verification. There were fewer instances
in the classes 2 and 4. In order to populate these
classes, we selected additional compound nouns
from Wiktionary by manually inspecting if they
can fall in either class.

These heuristics were only used for obtaining
our sample, they were not used for categorizing
the compound nouns in our study. The compound
nouns in all these temporary classes are merged
and 90 compound words are selected which have
at least 50 instances in the ukWaC corpus. These
90 compound words are chosen for the dataset.

2.3 Annotators

Snow et al. (2008) used Amazon mechanical turk
(AMT) for annotating language processing tasks.
They found that although an individual turker (an-
notator) performance was lower compared to an
expert, as the number of turkers increases, the
quality of the annotated data surpassed expert level
quality. We used 30 turkers for annotating each
single task and then retained the judgments with
sufficient consensus as described in section 2.4.

For each compound noun, 3 types of tasks are
created as described above: a judgment on how
literal the phrase is and a judgment on how literal
each noun is within the compound. For 90 com-
pound nouns, 270 independent tasks are therefore
created. Each of these tasks is assigned to 30 an-
notators. A task is assigned randomly to an anno-
tator by AMT so each annotator may work on only
some of the tasks for a given compound.

2.4 Quality of the annotations

Recent studies1 shows that AMT data is prone to
spammers and outliers. We dealt with them in
three ways. a). We designed a qualification test2

which provides an annotator with basic training
about literality, and they can participate in the an-
notation task only if they pass the test. b). Once
all the annotations (90 phrases * 3 tasks/phrase *
30 annotations/task = 8100 annotations) are com-
pleted, we calculated the average Spearman corre-
lation score (ρ) of every annotator by correlating
their annotation values with every other annotator
and taking the average. We discarded the work of
annotators whose ρ is negative and accepted all the
work of annotators whose ρ is greater than 0.6. c).
For the other annotators, we accepted their anno-
tation for a task only if their annotation judgment
is within the range of ±1.5 from the task’s mean.
Table 1 displays AMT statistics. Overall, each an-
notator on average worked on 53 tasks randomly
selected from the set of 270 tasks. This lowers the
chance of bias in the data because of any particular
annotator.

Spearman correlation scores ρ provide an esti-
mate of annotator agreement. To know the diffi-
culty level of the three types of tasks described in
section 2, ρ for each task type is also displayed in

1A study on AMT spammers http://bit.ly/
e1IPil

2The qualification test details are provided with the
dataset. Please refer to footnote 3.



No. of turkers participated 260
No. of them qualified 151
Turkers with ρ <= 0 21
Turkers with ρ >= 0.6 81
No. of annotations rejected 383
Avg. submit time (sec) per task 30.4

highest ρ avg. ρ
ρ for phrase compositionality 0.741 0.522
ρ for first word’s literality 0.758 0.570
ρ for second word’s literality 0.812 0.616
ρ for over all three task types 0.788 0.589

Table 1: Amazon Mechanical Turk statistics

Function f ρ R2

ADD 0.966 0.937
MULT 0.965 0.904
COMB 0.971 0.955
WORD1 0.767 0.609
WORD2 0.720 0.508

Table 3: Correlations between functions and
phrase compositionality scores

table 1. It is evident that annotators agree more at
word level than phrase level annotations.

For each compound, we also studied the dis-
tribution of scores around the mean by observing
the standard deviation σ. All the compound nouns
along with their mean and standard deviations are
shown in table 2.

Ideally, if all the annotators agree on a judg-
ment for a given compound or a component word,
the deviation should be low. Among the 90 com-
pounds, 15 of them are found to have a deviation
> ±1.5. We used this threshold to signify anno-
tator disagreement. The reason for disagreement
could be due to the ambiguity of the compound
e.g. silver screen, brass ring or due to the sub-
jective differences of opinion between the annota-
tors.

Overall, the inter annotator agreement (ρ) is
high and the standard deviation of most tasks is
low (except for a few exceptions). So we are confi-
dent that the dataset can be used as a reliable gold-
standard with which we conduct experiments. The
dataset is publicly available for download3.

3Annotation guidelines, Mechanical Turk hits, qual-
ification test, annotators demographic and educational
background, and final annotations are downloadable from
http://sivareddy.in/downloads or http:
//www.dianamccarthy.co.uk/downloads.html
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Figure 1: Mean values of phrase-level composi-
tionality scores

3 Analyzing the Human Judgments

By analyzing the mean values of the phrase level
annotations, we found that compounds displayed
a varied level of compositionality. For some com-
pounds annotators confirm that they can interpret
the meaning of a compound from its component
words and for some they do not. For others they
grade in-between. Figure 1 displays the mean val-
ues of compositionality scores of all compounds.
Compounds are arranged along the X-axis in in-
creasing order of their score. The graph displays
a continuum of compositionality (McCarthy et al.,
2003). We note that our sample of compounds was
selected to exhibit a range of compositionality.

3.1 Relation between the constituents and the
phrase compositionality judgments

The dataset allows us to study the relation between
constituent word level contributions to the phrase
level compositionality scores.

Let w1 and w2 be the constituent words of the
compoundw3. Let s1, s2 and s3 be the mean liter-
ality scores of w1, w2 and w3 respectively. Using
a 3-fold cross validation on the annotated data, we
tried various function fittings f over the judgments
s1, s2 and s3.

• ADD: a.s1 + b.s2 = s3
• MULT: a.s1.s2 = s3
• COMB: a.s1 + b.s2 + c.s1.s2 = s3
• WORD1: a.s1 = s3
• WORD2: a.s2 = s3

where a, b and c are coefficients.
We performed 3-fold cross validation to evalu-

ate the above functions (two training samples and



Compound Word1 Word2 Phrase Compound Word1 Word2 Phrase
climate change 4.90±0.30 4.83±0.38 4.97±0.18 engine room 4.86±0.34 5.00±0.00 4.93±0.25
graduate student 4.70±0.46 5.00±0.00 4.90±0.30 swimming pool 4.80±0.40 4.90±0.30 4.87±0.34
speed limit 4.93±0.25 4.83±0.38 4.83±0.46 research project 4.90±0.30 4.53±0.96 4.82±0.38
application form 4.77±0.42 4.86±0.34 4.80±0.48 bank account 4.87±0.34 4.83±0.46 4.73±0.44
parking lot 4.83±0.37 4.77±0.50 4.70±0.64 credit card 4.67±0.54 4.90±0.30 4.67±0.70
ground floor 4.66±0.66 4.70±0.78 4.67±0.60 mailing list 4.67±0.54 4.93±0.25 4.67±0.47
call centre 4.73±0.44 4.41±0.72 4.66±0.66 video game 4.50±0.72 5.00±0.00 4.60±0.61
human being 4.86±0.34 4.33±1.14 4.59±0.72 interest rate 4.34±0.99 4.69±0.53 4.57±0.90
radio station 4.66±0.96 4.34±0.80 4.47±0.72 health insurance 4.53±0.88 4.83±0.58 4.40±1.17
law firm 4.72±0.52 3.89±1.50 4.40±0.76 public service 4.67±0.65 4.77±0.62 4.40±0.76
end user 3.87±1.12 4.87±0.34 4.25±0.87 car park 4.90±0.40 4.00±1.10 4.20±1.05
role model 3.55±1.22 4.00±1.03 4.11±1.07 head teacher 2.93±1.51 4.52±1.07 4.00±1.16
fashion plate 4.41±1.07 3.31±2.07 3.90±1.42 balance sheet 3.82±0.89 3.90±0.96 3.86±1.01
china clay 2.00±1.84 4.62±1.00 3.85±1.27 game plan 2.82±1.96 4.86±0.34 3.83±1.23
brick wall 3.16±2.20 3.53±1.86 3.79±1.75 web site 2.68±1.69 3.93±1.18 3.79±1.21
brass ring 3.73±1.95 3.87±1.98 3.72±1.84 case study 3.66±1.12 4.67±0.47 3.70±0.97
polo shirt 1.73±1.41 5.00±0.00 3.37±1.38 rush hour 3.11±1.37 2.86±1.36 3.33±1.27
search engine 4.62±0.96 2.25±1.70 3.32±1.16 cocktail dress 1.40±1.08 5.00±0.00 3.04±1.22
face value 1.39±1.11 4.64±0.81 3.04±0.88 chain reaction 2.41±1.16 4.52±0.72 2.93±1.14
cheat sheet 2.30±1.59 4.00±0.83 2.89±1.11 blame game 4.61±0.67 2.00±1.28 2.72±0.92
fine line 3.17±1.34 2.03±1.52 2.69±1.21 front runner 3.97±0.96 1.29±1.10 2.66±1.32
grandfather clock 0.43±0.78 5.00±0.00 2.64±1.32 lotus position 1.11±1.17 4.78±0.42 2.48±1.22
spelling bee 4.81±0.77 0.52±1.04 2.45±1.25 silver screen 1.41±1.57 3.23±1.45 2.38±1.63
smoking jacket 1.04±0.82 4.90±0.30 2.32±1.29 spinning jenny 4.67±0.54 0.41±0.77 2.28±1.08
number crunching 4.48±0.77 0.97±1.13 2.26±1.00 guilt trip 4.71±0.59 0.86±0.94 2.19±1.16
memory lane 4.75±0.51 0.71±0.80 2.17±1.04 crash course 0.96±0.94 4.23±0.92 2.14±1.27
rock bottom 0.74±0.89 3.80±1.08 2.14±1.19 think tank 3.96±1.06 0.47±0.62 2.04±1.13
night owl 4.47±0.88 0.50±0.82 1.93±1.27 panda car 0.50±0.56 4.66±1.15 1.81±1.07
diamond wedding 1.07±1.29 3.41±1.34 1.70±1.05 firing line 1.61±1.65 1.89±1.50 1.70±1.72
pecking order 0.78±0.92 3.89±1.40 1.69±0.88 lip service 2.03±1.25 1.75±1.40 1.62±1.06
cash cow 4.22±1.07 0.37±0.73 1.56±1.10 graveyard shift 0.38±0.61 4.50±0.72 1.52±1.17
sacred cow 1.93±1.65 0.96±1.72 1.52±1.52 silver spoon 1.59±1.47 1.44±1.77 1.52±1.45
flea market 0.38±0.81 4.71±0.84 1.52±1.13 eye candy 3.83±1.05 0.71±0.75 1.48±1.10
rocket science 0.64±0.97 1.55±1.40 1.43±1.35 couch potato 3.27±1.48 0.34±0.66 1.41±1.03
kangaroo court 0.17±0.37 4.43±1.02 1.37±1.05 snail mail 0.60±0.80 4.59±1.10 1.31±1.02
crocodile tears 0.19±0.47 3.79±1.05 1.25±1.09 cutting edge 0.88±1.19 1.73±1.63 1.25±1.18
zebra crossing 0.76±0.62 4.61±0.86 1.25±1.02 acid test 0.71±1.10 3.90±1.24 1.22±1.26
shrinking violet 2.28±1.44 0.23±0.56 1.07±1.01 sitting duck 1.48±1.48 0.41±0.67 0.96±1.04
rat race 0.25±0.51 2.04±1.32 0.86±0.99 swan song 0.38±0.61 1.11±1.14 0.83±0.91
gold mine 1.38±1.42 0.70±0.81 0.81±0.82 rat run 0.41±0.62 2.33±1.40 0.79±0.66
nest egg 0.79±0.98 0.50±0.87 0.78±0.87 agony aunt 1.86±1.22 0.43±0.56 0.76±0.86
snake oil 0.37±0.55 0.81±1.25 0.75±1.12 monkey business 0.67±1.01 1.85±1.30 0.72±0.69
smoking gun 0.71±0.75 1.00±0.94 0.71±0.84 silver bullet 0.52±1.00 0.55±1.10 0.67±1.15
melting pot 1.00±1.15 0.48±0.63 0.54±0.63 ivory tower 0.38±1.03 0.54±0.68 0.46±0.68
cloud nine 0.47±0.62 0.23±0.42 0.33±0.54 gravy train 0.30±0.46 0.45±0.77 0.31±0.59

Table 2: Compounds with their constituent and phrase level mean±deviation scores

one testing sample at each iteration). The coeffi-
cients of the functions are estimated using least-
square linear regression technique over the train-
ing samples. The average Spearman correlation
scores (ρ) over testing samples are displayed in ta-
ble 3. The goodness of fit R2 values when trained
over the whole data are also displayed in table 3.

Results (both ρ andR2) clearly show that a rela-
tion exists between the constituent literality scores
and the phrase compositionality. Existing compo-
sitionality approaches on noun-noun compounds
such as (Baldwin et al., 2003; Korkontzelos and
Manandhar, 2009) use the semantics of only one
of the constituent words (generally the head word)

to determine the compositionality of the phrase.
But the goodness of fit R2 values show that the
functions ADD, COMB and MULT which intu-
itively make use of both the constituent scores fit
the data better than functions using only one of the
constituents. Furthermore, COMB and ADD sug-
gest that additive models are preferable to multi-
plicative. In this data, the first constituent word
plays a slightly more important role than the sec-
ond in determining compositionality.

Overall, this study suggests that it is possi-
ble to estimate the phrase level compositionality
scores given the constituent word level literality
scores. This motivates us to present constituent



based models (section 4.3) for compositionality
score estimation of a compound. We begin the
next section on computational models with a dis-
cussion of related work.

4 Computational Models

4.1 Related work

Most methods in compositionality detection can
be classified into two types - those which make
use of lexical fixedness and syntactic properties
of the MWEs, and those which make use of the
semantic similarities between the constituents and
the MWE.

Non compositional MWEs are known to have
lexical fixedness in which the component words
have high statistical association. Some of the
methods which exploit this feature are (Lin, 1999;
Pedersen, 2011). This property does not hold al-
ways because institutionalized MWEs (Sag et al.,
2002) are known to have high association even
though they are compositional, especially in the
case of compound nouns. Another property of
non-compositional MWEs is that they show syn-
tactic rigidness which do not allow internal mod-
ifiers or morphological variations of the compo-
nents, or variations that break typical selectional
preferences. Methods like (Cook et al., 2007; Mc-
Carthy et al., 2007; Fazly et al., 2009) exploit this
property. This holds mostly for verbal idioms but
not for compound nouns since the variations of
any compound noun are highly limited.

Other methods like (Baldwin et al., 2003;
Sporleder and Li, 2009) are based on seman-
tic similarities between the constituents and the
MWE. Baldwin et al. (2003) use only the infor-
mation of the semantic similarity between one of
the constituents and the compound to determine
the compositionality. Sporleder and Li (2009) de-
termine the compositionality of verbal phrases in a
given context (token-based disambiguation) based
on the lexical chain similarities of the constituents
and the context of the MWE. Bannard et al. (2003)
and McCarthy et al. (2003) study the composition-
ality in verb particles and they found that meth-
ods based on the similarity between simplex parts
(constituents) and the phrases are useful to study
semantics of the phrases. These findings moti-
vated our constituent based models along with the
findings in section 3.1.

In addition to the constituent based models (sec-
tion 4.3), there are composition function based

vector models (Mitchell and Lapata, 2008; Wid-
dows, 2008) which make use of the semantics of
the constituents in a different manner. These mod-
els are described in section 4.4 and are evaluated
in comparison with the constituent-based models.

The vector space model used in all our experi-
ments is described as follows.

4.2 Vector space model of meaning

Our vector space model is also called a word space
model (Sahlgren, 2006, WSM) since we repre-
sent a word’s meaning in a dimensional space.
In the WSM, a word meaning is represented in
terms of its Co-occurrences observed in a large
corpora where the co-occurrences are stored in a
vector format. The lemmatised context words
around the target word in a window of size 100
are treated as the co-occurrences. The top 10000
frequent content words in the ukWaC (along with
their part-of-speech category) are used for the fea-
ture co-occurrences i.e. the dimensionality of the
WSM. To measure similarity between two vectors,
cosine similarity (sim) is used. Following Mitchell
and Lapata (2008), the context words in the vec-
tor are set to the ratio of probability of the context
word given the target word to the overall probabil-
ity of the context word4.

4.3 Constituent based models

Given a compound word w3 with the constituents
w1 and w2, constituent based models determine
the compositionality score s3 of the compound by
first determining the literality scores s1 and s2 of
w1 and w2 respectively (section 4.3.1) and then
using one of the functions f (described in section
3.1), the compositionality score s3 is estimated us-
ing s3 = f(s1, s2) (section 4.3.2).

4.3.1 Literality scores of the constituents
If a constituent word is used literally in a given
compound it is highly likely that the compound
and the constituent share common co-occurrences.
For example, the compound swimming pool has
the co-occurrences water, fun and indoor which
are also commonly found with the constituents
swimming and pool.

We define the literality of a word in a given
compound as the similarity between the com-
pound and the constituent co-occurrence vectors
i.e. if the number of common co-occurrences are

4This is similar to pointwise mutual information without
logarithm



numerous then the constituent is more likely to be
meant literally in the compound.

Let v1, v2 and v3 be the co-occurrence vectors
of w1, w2 and w3. The literality scores s1 and s2
of w1 and w2 in the compound w3 are defined as

s1 = sim(v1, v3)
s2 = sim(v2, v3)

where sim is the cosine similarity between the
vectors.

4.3.2 Compositionality of the compound
Given the literality scores s1 and s2 of the con-
stituents, we can now compute the compositional-
ity score s3 of the compound w3 using any of the
functions f defined in section 3.1.

s3 = f(s1, s2)

4.4 Composition function based models
In these models (Schone and Jurafsky, 2001; Katz
and Giesbrecht, 2006; Giesbrecht, 2009) of com-
positionality detection, firstly a vector for the com-
pound is composed from its constituents using
a compositionality function ⊕. Then the simi-
larity between the composed vector and true co-
occurrence vector of the compound is measured
to determine the compositionality: the higher the
similarity, the higher the compositionality of the
compound. Guevara (2011) observed that addi-
tive models performed well for building compo-
sition vectors of phrases from their parts whereas
Mitchell and Lapata (2008) found in favor of mul-
tiplicative models. We experiment using both the
compositionality functions simple addition5 and
simple multiplication, which are the most widely
used composition functions, known for their sim-
plicity and good performance.

Vector v1⊕ v2 for a compound w3 is composed
from its constituent word vectors v1 and v2 using
the vector addition av1 + bv2 and simple multipli-
cation v1v2 where the ith element of v1 ⊕ v2 is
defined as

(av1 + bv2)i = a.v1i + b.v2i

(v1v2)i = v1i.v2i

5Please note that simple additive model (Mitchell and La-
pata, 2008) is different from the additive model described in
(Guevara, 2011). In (Mitchell and Lapata, 2008) the coeffi-
cients are real numbers whereas in (Guevara, 2011) they are
matrices.

first constituent second constituent
s1 0.616 –
s2 – 0.707

Table 4: Constituent level correlations

The compositionality score of the compound is
then measured using s3 = sim(v1⊕v2, v3) where
v3 is the co-occurrence vector of the compound
built from the corpus. For more details of these
models please refer to (Mitchell and Lapata, 2008;
Giesbrecht, 2009).

4.5 Evaluation

We evaluated all the models on the dataset devel-
oped in section 2. Since our dataset has constituent
level contributions along with phrase composi-
tionality judgments, we evaluated the constituent
based models against both the literality scores
of the constituents (section 4.3.1) and the phrase
level judgments (section 4.3.2). The composition
function models are evaluated only on phrase level
scores following (McCarthy et al., 2003; Venkata-
pathy and Joshi, 2005; Biemann and Giesbrecht,
2011): higher correlation scores indicate better
compositionality predictions.

Constituent based models evaluation
Spearman’s ρ correlations of s1 and s2 with the
human constituent level judgments are shown in
table 4. We observed that the predictions for the
second constituent are more accurate than those
for the first constituent. Perhaps these constitute
an easier set of nouns for modelling but we need
to investigate this further.

For the phrase compositionality evaluation we
did a 3-fold cross validation. The parameters
of the functions f (section 4.3.2) are predicted
by least square linear regression over the training
samples and optimum values are selected. The av-
erage Spearman correlation scores of phrase com-
positionality scores with human judgements on the
testing samples are displayed in table 5. The good-
ness of fit R2 values when trained over the whole
dataset are also displayed.

It is clear that models ADD and COMB which
use both the constituents are better predictors
of phrase compositionality compared to the sin-
gle word based predictors WORD1 and WORD2.
Both ADD and COMB are competitive in terms of
both the correlations (accuracy) and goodness of



Model ρ R2

Constituent Based Models

ADD 0.686 0.613
MULT 0.670 0.428
COMB 0.682 0.615
WORD1 0.669 0.548
WORD2 0.515 0.410
Compositionality Function Based Models

av1 + bv2 0.714 0.620
v1v2 0.650 0.501
RAND 0.002 0.000

Table 5: Phrase level correlations of composition-
ality scores

fit values. The model MULT shows good correla-
tion but the goodness of fit is lower. First con-
stituent (model WORD1 i.e. sim(v1, v3)) was
found to be a better predictor of phrase composi-
tionality than the second (WORD2) following the
behaviour of the mechanical turkers as in table 3.

Composition function based models evaluation
These models are evaluated for phrase composi-
tionality scores. As with the constituent based
models, for estimating the model parameters a and
b of the composition function based models, we
did a 3-fold cross validation. The best results of
additive model on the training samples are found
at a=0.60 and b=0.40. Average Spearman cor-
relation scores of both addition and multiplica-
tion models over the testing samples are displayed
in table 5. The goodness of fit R2 values when
trained over the whole dataset are also displayed.

Vector addition has a clear upper hand over mul-
tiplication in terms of both accuracy and goodness
of fit for phrase compositionality prediction.

Winner
For phrase compositionality prediction (table 5),
both constituent based and compositionality func-
tion based models are found to be competitive,
though compositionality function based models
perform slightly better. The reason could be be-
cause while constituent based models use con-
textual information of each constituent indepen-
dently, composition function models make use of
collective evidence from the contexts of both the
constituents simultaneously. In the public eval-
uations of compositionality detection (Biemann
and Giesbrecht, 2011), our system (Reddy et al.,
2011) which uses the notion of contexts salient to

both the constituents achieved better performance
than the system which uses only one of the con-
stituent’s contexts.

All the results when compared with random
baseline (RAND in table 5), which assigns a ran-
dom compositionality score to a compound, are
highly significant.

5 Conclusions

In this paper we examined the compositionality
judgments of noun compounds and also the lit-
erality judgments of their constituent words. Our
study reveals that both the constituent words play
a major role in deciding the compositionality of
the phrase. We showed that the functions which
predict the compositionality using both the con-
stituent literality scores have high correlations
with compositionality judgments. Based on this
evidence we proposed constituent based models
for compositionality detection. We compared con-
stituent based models with compositionality func-
tion based models. The additive compositionality
functions were slightly superior to the best per-
forming constituent models (again additive) but
performance is comparable and we plan to exam-
ine more sophisticated constituent models in the
future.

All the 8100 annotations collected in this work
are released publicly. We hope the dataset can
reveal more insights into the compositionality in
terms of the contribution from the constituents.
Future directions of this work include token based
disambiguation of phrases and designing more
sophisticated constituent based models. Extend-
ing this study on other kinds of phrases such as
adjective-noun, verb particle, verb-noun phrases
may throw more light into our understanding of
compositionality.
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